Session:3 Probability Topics

Solutions

Introductory Business Statistics | Leadership Development – Micro-Learning Session

Rice University 2020 | Michael Laverty, Colorado State University Global Chris Littel, North Carolina State University| https://openstax.org/details/books/introductory-business-statistics

1

  1. P(L′) = P(S)
  2. P(M 
     

    S)

  3. P(F 
     

    L)

  4. P(M|
    |
     

    L)

  5. P(L|
    |
     

    M)

  6. P(S|
    |
     

    F)

  7. P(F|
    |
     

    L)

  8. P(F 
     

    L)

  9. P(M 
     

    S)

  10. P(F)

3

P(N) = 1542

1542 = 514

514 = 0.36

5

P(C) = 542

542 = 0.12

7

P(G) = 20150

20150 = 215

215 = 0.13

9

P(R) = 22150

22150 = 1175

1175 = 0.15

11

P(O) = 1502238202826150

1502238202826150 = 16150

16150 = 875

875 = 0.11

13

P(E) = 47194

47194 = 0.24

15

P(N) = 23194

23194 = 0.12

17

P(S) = 12194

12194 = 697

697 = 0.06

19

1352

1352 = 14

14 = 0.25

21

36

36 = 12

12 = 0.5

23

P(R)=48=0.5

()=48=0.5 

25

P(O 

 H)

27

P(H|

|I)

29

P(N|

|O)

31

P(I 

 N)

33

P(I)

35. The likelihood that an event will occur given that another event has already occurred.

37

1

39. the probability of landing on an even number or a multiple of three

41

P(J) = 0.3

43

P(QR)=P(Q)P(R)

()=()() 

0.1 = (0.4)P(R)

P(R) = 0.25

45

0.376

47

C|

|L means, given the person chosen is a Latino Californian, the person is a registered voter who prefers life in prison without parole for a person convicted of first degree murder.

49

L 

 C is the event that the person chosen is a Latino California registered voter who prefers life without parole over the death penalty for a person convicted of first degree murder.

51

0.6492

53

No, because P(L 

 C) does not equal 0.

55

P(musician is a male 

 had private instruction) = 15130

15130 = 326

326 = 0.12

57

The events are not mutually exclusive. It is possible to be a female musician who learned music in school.

58.

This is a tree diagram with two branches. The first branch, labeled Cancer, shows two lines: 0.4567 C and 0.5433 C'. The second branch is labeled False Positive. From C, there are two lines: 0 P and 1 P'. From C', there are two lines: 0.51 P and 0.49 P'.
Figure 3.21

60

35,065100,450

35,065100,450 

62

To pick one person from the study who is Japanese American AND smokes 21 to 30 cigarettes per day means that the person has to meet both criteria: both Japanese American and smokes 21 to 30 cigarettes. The sample space should include everyone in the study. The probability is 4,715100,450

4,715100,450.

64

To pick one person from the study who is Japanese American given that person smokes 21-30 cigarettes per day, means that the person must fulfill both criteria and the sample space is reduced to those who smoke 21-30 cigarettes per day. The probability is 471515,273

471515,273.

66

  1. This is a tree diagram with branches showing probabilities of each draw. The first branch shows two lines: 5/8 Green and 3/8 Yellow. The second branch has a set of two lines (5/8 Green and 3/8 Yellow) for each line of the first branch.
    Figure 3.22
  2. P(GG) = (58)(58)
    (58)(58)
     

    2564 2564 

  3. P(at least one green) = P(GG) + P(GY) + P(YG) = 2564
    2564
     

    1564 1564 

    1564 1564 

    5564 5564 

  4. P(G|
    |
     

    G) = 58 58 

  5. Yes, they are independent because the first card is placed back in the bag before the second card is drawn; the composition of cards in the bag remains the same from draw one to draw two.

68

  1. <20 20–64 >64 Totals
    Female 0.0244 0.3954 0.0661 0.486
    Male 0.0259 0.4186 0.0695 0.514
    Totals 0.0503 0.8140 0.1356 1
    Table 3.22
  2. P(F) = 0.486
  3. P(>64 |
    |
     

    F) = 0.1361

  4. P(>64 and F) = P(FP(>64|F) = (0.486)(0.1361) = 0.0661
  5. P(>64 |
    |
     

    F) is the percentage of female drivers who are 65 or older and P(>64   

    F) is the percentage of drivers who are female and 65 or older.

  6. P(>64) = P(>64 
     

    F) + P(>64   

    M) = 0.1356

  7. No, being female and 65 or older are not mutually exclusive because they can occur at the same time P(>64 
     

    F) = 0.0661.

70

  1. Car, truck or van Walk Public transportation Other Totals
    Alone 0.7318
    Not alone 0.1332
    Totals 0.8650 0.0390 0.0530 0.0430 1
    Table 3.23
  2. If we assume that all walkers are alone and that none from the other two groups travel alone (which is a big assumption) we have: P(Alone) = 0.7318 + 0.0390 = 0.7708.
  3. Make the same assumptions as in (b) we have: (0.7708)(1,000) = 771
  4. (0.1332)(1,000) = 133
73

  1. You can’t calculate the joint probability knowing the probability of both events occurring, which is not in the information given; the probabilities should be multiplied, not added; and probability is never greater than 100%
  2. A home run by definition is a successful hit, so he has to have at least as many successful hits as home runs.
75

0

77

0.3571

79

0.2142

81

Physician (83.7)

83

83.7 − 79.6 = 4.1

85

P(Occupation < 81.3) = 0.5

87

  1. The Forum Research surveyed 1,046 Torontonians.
  2. 58%
  3. 42% of 1,046 = 439 (rounding to the nearest integer)
  4. 0.57
  5. 0.60.
89

  1. P(Betting on two line that touch each other on the table) = 638638
  2. P(Betting on three numbers in a line) = 338338
  3. P(Betting on one number) = 138138
  4. P(Betting on four number that touch each other to form a square) = 438438
  5. P(Betting on two number that touch each other on the table ) = 238238
  6. P(Betting on 0-00-1-2-3) = 538538
  7. P(Betting on 0-1-2; or 0-00-2; or 00-2-3) = 338338
91

  1. {G1, G2, G3, G4, G5, Y1, Y2, Y3}
  2. 5858
  3. 2323
  4. 2828
  5. 6868
  6. No, because P(G  E) does not equal 0.
93.

NOTE

The coin toss is independent of the card picked first.

  1. {(G,H) (G,T) (B,H) (B,T) (R,H) (R,T)}
  2. P(A) = P(blue)P(head) = (310)(310)(12)(12) = 320320
  3. Yes, A and B are mutually exclusive because they cannot happen at the same time; you cannot pick a card that is both blue and also (red or green). P(A  B) = 0
  4. No, A and C are not mutually exclusive because they can occur at the same time. In fact, C includes all of the outcomes of A; if the card chosen is blue it is also (red or blue). P(A  C) = P(A) = 320320
95

  1. S = {(HHH), (HHT), (HTH), (HTT), (THH), (THT), (TTH), (TTT)}
  2. 4848
  3. Yes, because if A has occurred, it is impossible to obtain two tails. In other words, P(A  B) = 0.
97

  1. If Y and Z are independent, then P(Y  Z) = P(Y)P(Z), so P(Y  Z) = P(Y) + P(Z) – P(Y)P(Z).
  2. 0.5
99

iii i iv ii

101

  1. P(R) = 0.44
  2. P(R||E) = 0.56
  3. P(R||O) = 0.31
  4. No, whether the money is returned is not independent of which class the money was placed in. There are several ways to justify this mathematically, but one is that the money placed in economics classes is not returned at the same overall rate; P(R||E) ≠ P(R).
  5. No, this study definitely does not support that notion; in fact, it suggests the opposite. The money placed in the economics classrooms was returned at a higher rate than the money place in all classes collectively; P(R||E) > P(R).
103

  1. P(type O  Rh-) = P(type O) + P(Rh-) – P(type O  Rh-)

    0.52 = 0.43 + 0.15 – P(type O  Rh-); solve to find P(type O  Rh-) = 0.06

    6% of people have type O, Rh- blood

  2. P(NOT(type O  Rh-)) = 1 – P(type O  Rh-) = 1 – 0.06 = 0.94

    94% of people do not have type O, Rh- blood

105

  1. Let C = be the event that the cookie contains chocolate. Let N = the event that the cookie contains nuts.
  2. P(C  N) = P(C) + P(N) – P(C  N) = 0.36 + 0.12 – 0.08 = 0.40
  3. P(NEITHER chocolate NOR nuts) = 1 – P(C  N) = 1 – 0.40 = 0.60
107

0

109

10671067

111

10341034

113

d

115

  1. Race and sex 1–14 15–24 25–64 Over 64 TOTALS
    White, male 1,165 2,036 3,703 1,491 8,395
    White, female 1,076 2,242 4,060 1,751 9,129
    Black, male 142 194 384 104 824
    Black, female 131 290 486 154 1,061
    All others 156
    TOTALS 2,792 5,279 9,354 3,656 21,081
    Table 3.24
  2. Race and sex 1–14 15–24 25–64 Over 64 TOTALS
    White, male 1,165 2,036 3,703 1,491 8,395
    White, female 1,076 2,242 4,060 1,751 9,129
    Black, male 142 194 384 104 824
    Black, female 131 290 486 154 1,061
    All others 278 517 721 156 1672
    TOTALS 2,792 5,279 9,354 3,656 21,081
    Table 3.25
  3. 8,39521,0810.39828,39521,0810.3982
  4. 1,06121,0810.05031,06121,0810.0503
  5. 1,88521,0810.08941,88521,0810.0894
  6. 9,21921,0810.43739,21921,0810.4373
  7. 1,5953,6560.43631,5953,6560.4363
117

b

119

  1. 2610626106
  2. 3310633106
  3. 2110621106
  4. (26106)(26106) + (33106)(33106) – (21106)(21106) = (38106)(38106)
  5. 21332133
121

a

124

  1. P(C) = 0.4567
  2. not enough information
  3. not enough information
  4. No, because over half (0.51) of men have at least one false positive text
126

  1. (JK)=P(J)+P(K)P(JK);()=(J)+()(); 0.45=0.18+0.37P(JK);0.45=0.18+0.37(); solve to find P(JK)=0.10()=0.10
  2. P(NOT(JK))=1P(JK)(NOT())=1() =10.10=0.90=10.10=0.90
  3. P(NOT(JK))=1P(JK)(NOT())=1() =10.45=0.55

LEARN | GROW | LEAD

Access Your Leadership Academy!

Evolutionary

Leadership Academy

Leadership

Excellence Academy

Leadership

On the Go

Audiobooks

Leadership

On the Go

Courses

Go

LEARN | GROW | LEAD

Access Your Leadership Academy!

Evolutionary

Leadership Academy

Leadership

Excellence Academy

Leadership

On the Go

Audiobooks

Leadership

On the Go

Courses