Session:C |

Present Discounted Value

Principles of Microeconomics 3e | Leadership Development – Micro-Learning Session

Rice University 2020 | Michael Laverty, Colorado State University Global Chris Littel, North Carolina State University| https://openstax.org/details/books/principles-microeconomics-3e

As explained in Financial Markets, the prices of stocks and bonds depend on future events. The price of a bond depends on the future payments that the bond is expected to make, including both payments of interest and the repayment of the face value of the bond. The price of a stock depends on the expected future profits earned by the firm. The concept of a present discounted value (PDV), which is defined as the amount you should be willing to pay in the present for a stream of expected future payments, can be used to calculate appropriate prices for stocks and bonds. To place a present discounted value on a future payment, think about what amount of money you would need to have in the present to equal a certain amount in the future. This calculation will require an interest rate. For example, if the interest rate is 10%, then a payment of $110 a year from now will have a present discounted value of $100—that is, you could take $100 in the present and have $110 in the future. We will first shows how to apply the idea of present discounted value to a stock and then we will show how to apply it to a bond.

Applying Present Discounted Value to a Stock

Consider the case of Babble, Inc., a company that offers speaking lessons. For the sake of simplicity, say that the founder of Babble is 63 years old and plans to retire in two years, at which point the company will be disbanded. The company is selling 200 shares of stock and profits are expected to be $15 million right away, in the present, $20 million one year from now, and $25 million two years from now. All profits will be paid out as dividends to shareholders as they occur. Given this information, what will an investor pay for a share of stock in this company?

A financial investor, thinking about what future payments are worth in the present, will need to choose an interest rate. This interest rate will reflect the rate of return on other available financial investment opportunities, which is the opportunity cost of investing financial capital, and also a risk premium (that is, using a higher interest rate than the rates available elsewhere if this investment appears especially risky). In this example, say that the financial investor decides that appropriate interest rate to value these future payments is 15%.

Table C1 shows how to calculate the present discounted value of the future profits. For each time period, when a benefit is going to be received, apply the formula:

Present discounted value = Future value received years in the future(1 + Interest rate)numbers of years t

Present discounted value = Future value received years in the future(1 + Interest rate)numbers of years t 

Payments from Firm Present Value
$15 million in present $15 million
$20 million in one year $20 million/(1 + 0.15)1 = $17.4 million
$25 million in two years $25 million/(1 + 0.15)2 = $18.9 million
Total $51.3 million
Table C1 Calculating Present Discounted Value of a Stock

Next, add up all the present values for the different time periods to get a final answer. The present value calculations ask what the amount in the future is worth in the present, given the 15% interest rate. Notice that a different PDV calculation needs to be done separately for amounts received at different times. Then, divide the PDV of total profits by the number of shares, 200 in this case: 51.3 million/200 = 0.2565 million. The price per share should be about $256,500 per share.

Of course, in the real world expected profits are a best guess, not a hard piece of data. Deciding which interest rate to apply for discounting to the present can be tricky. One needs to take into account both potential capital gains from the future sale of the stock and also dividends that might be paid. Differences of opinion on these issues are exactly why some financial investors want to buy a stock that other people want to sell: they are more optimistic about its future prospects. Conceptually, however, it all comes down to what you are willing to pay in the present for a stream of benefits to be received in the future.

Applying Present Discounted Value to a Bond

A similar calculation works in the case of bonds. Financial Markets explains that if the interest rate falls after a bond is issued, so that the investor has locked in a higher rate, then that bond will sell for more than its face value. Conversely, if the interest rate rises after a bond is issued, then the investor is locked into a lower rate, and the bond will sell for less than its face value. The present value calculation sharpens this intuition.

Think about a simple two-year bond. It was issued for $3,000 at an interest rate of 8%. Thus, after the first year, the bond pays interest of 240 (which is 3,000 × 8%). At the end of the second year, the bond pays $240 in interest, plus the $3,000 in principle. Calculate how much this bond is worth in the present if the discount rate is 8%. Then, recalculate if interest rates rise and the applicable discount rate is 11%. To carry out these calculations, look at the stream of payments being received from the bond in the future and figure out what they are worth in present discounted value terms. The calculations applying the present value formula are shown in Table C2.

Stream of Payments (for the 8% interest rate) Present Value (for the 8% interest rate) Stream of Payments (for the 11% interest rate) Present Value (for the 11% interest rate)
$240 payment after one year $240/(1 + 0.08)1 = $222.20 $240 payment after one year $240/(1 + 0.11)1 = $216.20
$3,240 payment after second year $3,240/(1 + 0.08)2 = $2,777.80 $3,240 payment after second year $3,240/(1 + 0.11)2 = $2,629.60
Total $3,000 Total $2,845.80
Table C2 Computing the Present Discounted Value of a Bond

The first calculation shows that the present value of a $3,000 bond, issued at 8%, is just $3,000. After all, that is how much money the borrower is receiving. The calculation confirms that the present value is the same for the lender. The bond is moving money around in time, from those willing to save in the present to those who want to borrow in the present, but the present value of what is received by the borrower is identical to the present value of what will be repaid to the lender.

The second calculation shows what happens if the interest rate rises from 8% to 11%. The actual dollar payments in the first column, as determined by the 8% interest rate, do not change. However, the present value of those payments, now discounted at a higher interest rate, is lower. Even though the future dollar payments that the bond is receiving have not changed, a person who tries to sell the bond will find that the investment’s value has fallen.

Again, real-world calculations are often more complex, in part because, not only the interest rate prevailing in the market, but also the riskiness of whether the borrower will repay the loan, will change. In any case, the price of a bond is always the present value of a stream of future expected payments.

Other Applications

Present discounted value is a widely used analytical tool outside the world of finance. Every time a business thinks about making a physical capital investment, it must compare a set of present costs of making that investment to the present discounted value of future benefits. When government thinks about a proposal to, for example, add safety features to a highway, it must compare costs incurred in the present to benefits received in the future. Some academic disputes over environmental policies, like how much to reduce carbon dioxide emissions because of the risk that they will lead to a warming of global temperatures several decades in the future, turn on how one compares present costs of pollution control with long-run future benefits. Someone who wins the lottery and is scheduled to receive a string of payments over 30 years might be interested in knowing what the present discounted value is of those payments. Whenever a string of costs and benefits stretches from the present into different times in the future, present discounted value becomes an indispensable tool of analysis.

Figure B5 represents only Petunia’s preferences. Other people might make other choices. For example, a person whose substitution and income effects on leisure exactly counterbalanced each other might react to a higher wage with a choice like D, exactly above the original choice A, which means taking all of the benefit of the higher wages in the form of income while working the same number of hours. Yet another person, whose substitution effect on leisure outweighed the income effect, might react to a higher wage by making a choice like F, where the response to higher wages is to work more hours and earn much more income. To represent these different preferences, you could easily draw the indifference curve Uh to be tangent to the new budget constraint at D or F, rather than at B.

An Intertemporal Choice Example

Quentin has saved up $10,000. He is thinking about spending some or all of it on a vacation in the present, and then will save the rest for another big vacation five years from now. Over those five years, he expects to earn a total 80% rate of return. Figure B6 shows Quentin’s budget constraint and his indifference curves between present consumption and future consumption. The highest level of utility that Quentin can achieve at his original intertemporal budget constraint occurs at point A, where he is consuming $6,000, saving $4,000 for the future, and expecting with the accumulated interest to have $7,200 for future consumption (that is, $4,000 in current financial savings plus the 80% rate of return).

However, Quentin has just realized that his expected rate of return was unrealistically high. A more realistic expectation is that over five years he can earn a total return of 30%. In effect, his intertemporal budget constraint has pivoted to the left, so that his original utility-maximizing choice is no longer available. Will Quentin react to the lower rate of return by saving more, or less, or the same amount? Again, the language of substitution and income effects provides a framework for thinking about the motivations behind various choices. The dashed line, which is a graphical tool to separate the substitution and income effect, is carefully inserted with the same slope as the new opportunity set, so that it reflects the changed rate of return, but it is tangent to the original indifference curve, so that it shows no change in utility or “buying power.”

The substitution effect tells how Quentin would have altered his consumption because the lower rate of return makes future consumption relatively more expensive and present consumption relatively cheaper. The movement from the original choice A to point C shows how Quentin substitutes toward more present consumption and less future consumption in response to the lower interest rate, with no change in utility. The substitution arrows on the horizontal and vertical axes of Figure B6 show the direction of the substitution effect motivation. The substitution effect suggests that, because of the lower interest rate, Quentin should consume more in the present and less in the future.

Quentin also has an income effect motivation. The lower rate of return shifts the budget constraint to the left, which means that Quentin’s utility or “buying power” is reduced. The income effect (assuming normal goods) encourages less of both present and future consumption. The impact of the income effect on reducing present and future consumption in this example is shown with “i” arrows on the horizontal and vertical axis of Figure B6.

The graph shows the indifference curve and an intertemporal budget constraint. The x-axis is labeled “present consumption.” The y-axis is labeled “future consumption.” The original choice is A ($6,000, $7,200), at the tangency between the original budget constraint and the original indifference curve Uh. A dashed line is drawn parallel to the new budget set, so that its slope reflects the lower rate of return, but is tangent to the original indifference curve. The movement from A to C which is approximately point ($7,900, $5,000) is the substitution effect. The income effect is the shift from C to B ($7,000, $3,900). The following points are also marked: F ($4,000, $6,500), and D ($6,000, $5,200).
Figure B6 Indifference Curve and an Intertemporal Budget Constraint The original choice is A, at the tangency between the original budget constraint and the original indifference curve Uh. The dashed line is drawn parallel to the new budget set, so that its slope reflects the lower rate of return, but is tangent to the original indifference curve. The movement from A to C is the substitution effect: in this case, future consumption has become relatively more expensive, and present consumption has become relatively cheaper. The income effect is the shift from C to B; that is, the reduction in utility or “buying power” that causes a move to a lower indifference curve Ul, but with the relative price the same. It means less present and less future consumption. In the move from A to B, the substitution effect on present consumption is greater than the income effect, so the overall result is more present consumption. Notice that the lower indifference curve could have been drawn tangent to the lower budget constraint point D or point F, depending on personal preferences.

Taking both effects together, the substitution effect is encouraging Quentin toward more present and less future consumption, because present consumption is relatively cheaper, while the income effect is encouraging him to less present and less future consumption, because the lower interest rate is pushing him to a lower level of utility. For Quentin’s personal preferences, the substitution effect is stronger so that, overall, he reacts to the lower rate of return with more present consumption and less savings at choice B. However, other people might have different preferences. They might react to a lower rate of return by choosing the same level of present consumption and savings at choice D, or by choosing less present consumption and more savings at a point like F. For these other sets of preferences, the income effect of a lower rate of return on present consumption would be relatively stronger, while the substitution effect would be relatively weaker.

Sketching Substitution and Income Effects

Indifference curves provide an analytical tool for looking at all the choices that provide a single level of utility. They eliminate any need for placing numerical values on utility and help to illuminate the process of making utility-maximizing decisions. They also provide the basis for a more detailed investigation of the complementary motivations that arise in response to a change in a price, wage or rate of return—namely, the substitution and income effects.

If you are finding it a little tricky to sketch diagrams that show substitution and income effects so that the points of tangency all come out correctly, it may be useful to follow this procedure.

Step 1. Begin with a budget constraint showing the choice between two goods, which this example will call “candy” and “movies.” Choose a point A which will be the optimal choice, where the indifference curve will be tangent—but it is often easier not to draw in the indifference curve just yet. See Figure B7.

The graph’s x-axis is labeled “candy,” and the y-axis is labeled “movies.” The graphs shows one downward sloping line with the point A marked.
Figure B7

Step 2. Now the price of movies changes: let’s say that it rises. That shifts the budget set inward. You know that the higher price will push the decision-maker down to a lower level of utility, represented by a lower indifference curve. But at this stage, draw only the new budget set. See Figure B8.

The graph matches the one from Step 1 with the addition of a second downward sloping line that intersects with the original line at the x-axis. The other endpoint of this new line is lower on the y-axis than the one from Step 1.
Figure B8

Step 3. The key tool in distinguishing between substitution and income effects is to insert a dashed line, parallel to the new budget line. This line is a graphical tool that allows you to distinguish between the two changes: (1) the effect on consumption of the two goods of the shift in prices—with the level of utility remaining unchanged—which is the substitution effect; and (2) the effect on consumption of the two goods of shifting from one indifference curve to the other—with relative prices staying unchanged—which is the income effect. The dashed line is inserted in this step. The trick is to have the dashed line travel close to the original choice A, but not directly through point A. See Figure B9.

The matches the one from Step 2 with the addition of line parallel to the one added in Step 2. This dashed line appears to the right of the Step 2 line.
Figure B9

Step 4. Now, draw the original indifference curve, so that it is tangent to both point A on the original budget line and to a point C on the dashed line. Many students find it easiest to first select the tangency point C where the original indifference curve touches the dashed line, and then to draw the original indifference curve through A and C. The substitution effect is illustrated by the movement along the original indifference curve as prices change but the level of utility holds constant, from A to C. As expected, the substitution effect leads to less consumed of the good that is relatively more expensive, as shown by the “s” (substitution) arrow on the vertical axis, and more consumed of the good that is relatively less expensive, as shown by the “s” arrow on the horizontal axis. See Figure B10.

The graph matches the one from Step 3 with the addition a curved line that intersects with point A (from Step 1) and point C which appears on the dashed line added in Step 3. The graph also includes “s” along the y-axis with an arrow pointing down and “s” along the x-axis with an arrow pointing right.
Figure B10

Step 5. With the substitution effect in place, now choose utility-maximizing point B on the new opportunity set. When you choose point B, think about whether you wish the substitution or the income effect to have a larger impact on the good (in this case, candy) on the horizontal axis. If you choose point B to be directly in a vertical line with point A (as is illustrated here), then the income effect will be exactly offsetting the substitution effect on the horizontal axis. If you insert point B so that it lies a little to right of the original point A, then the substitution effect will exceed the income effect. If you insert point B so that it lies a little to the left of point A, then the income effect will exceed the substitution effect. The income effect is the movement from C to B, showing how choices shifted as a result of the decline in buying power and the movement between two levels of utility, with relative prices remaining the same. With normal goods, the negative income effect means less consumed of each good, as shown by the direction of the “i” (income effect) arrows on the vertical and horizontal axes. See Figure B11.

The graph matches the one from Step 4 with the addition of a curved line that intersects with point B which appears on the line added in Step 2. The shape of the curve matches the shape of the curve added in Step 4. The graph also includes “i” along the y-axis with an arrow pointing down and “i” along the x-axis with an arrow pointing left.
Figure B11

In sketching substitution and income effect diagrams, you may wish to practice some of the following variations: (1) Price falls instead of a rising; (2) The price change affects the good on either the vertical or the horizontal axis; (3) Sketch these diagrams so that the substitution effect exceeds the income effect; the income effect exceeds the substitution effect; and the two effects are equal.

One final note: The helpful dashed line can be drawn tangent to the new indifference curve, and parallel to the original budget line, rather than tangent to the original indifference curve and parallel to the new budget line. Some students find this approach more intuitively clear. The answers you get about the direction and relative sizes of the substitution and income effects, however, should be the same.

Key Concepts and Summary

An indifference curve is drawn on a budget constraint diagram that shows the tradeoffs between two goods. All points along a single indifference curve provide the same level of utility. Higher indifference curves represent higher levels of utility. Indifference curves slope downward because, if utility is to remain the same at all points along the curve, a reduction in the quantity of the good on the vertical axis must be counterbalanced by an increase in the quantity of the good on the horizontal axis (or vice versa). Indifference curves are steeper on the far left and flatter on the far right, because of diminishing marginal utility.

The utility-maximizing choice along a budget constraint will be the point of tangency where the budget constraint touches an indifference curve at a single point. A change in the price of any good has two effects: a substitution effect and an income effect. The substitution effect motivation encourages a utility-maximizer to buy less of what is relatively more expensive and more of what is relatively cheaper. The income effect motivation encourages a utility-maximizer to buy more of both goods if utility rises or less of both goods if utility falls (if they are both normal goods).

In a labor-leisure choice, every wage change has a substitution and an income effect. The substitution effect of a wage increase is to choose more income, since it is cheaper to earn, and less leisure, since its opportunity cost has increased. The income effect of a wage increase is to choose more of leisure and income, since they are both normal goods. The substitution and income effects of a wage decrease would reverse these directions.

In an intertemporal consumption choice, every interest rate change has a substitution and an income effect. The substitution effect of an interest rate increase is to choose more future consumption, since it is now cheaper to earn future consumption and less present consumption (more savings), since the opportunity cost of present consumption in terms of what is being given up in the future has increased. The income effect of an interest rate increase is to choose more of both present and future consumption, since they are both normal goods. The substitution and income effects of an interest rate decrease would reverse these directions.

Review Questions

Exercise B1 What point is preferred along an indifference curve?
Exercise B2 Why do indifference curves slope down?
Exercise B3 Why are indifference curves steep on the left and flatter on the right?
Exercise B4 How many indifference curves does a person have?
Exercise B5 How can you tell which indifference curves represent higher or lower levels of utility?
Exercise B6 What is a substitution effect?
Exercise B7 What is an income effect?
Exercise B8 Does the “income effect” involve a change in income? Explain.
Exercise B9 Does a change in price have both an income effect and a substitution effect? Does a change in income have both an income effect and a substitution effect?
Exercise B10 Would you expect, in some cases, to see only an income effect or only a substitution effect? Explain.Exercise B11 Which is larger, the income effect or the substitution effect?

LEARN | GROW | LEAD

Access Your Leadership Academy!

Evolutionary

Leadership Academy

Leadership

Excellence Academy

Leadership

On the Go

Audiobooks

Leadership

On the Go

Courses

Go

LEARN | GROW | LEAD

Access Your Leadership Academy!

Evolutionary

Leadership Academy

Leadership

Excellence Academy

Leadership

On the Go

Audiobooks

Leadership

On the Go

Courses